
GEOPHYSICS. VOL. 50. NO. I2 (DECEMBER 1985); P. 2458-2472, 1 TABLE. 

Migration and inversion of seismic data 

R. H. Stolt* and A. B. Wegleinz 

r 

ABSTRACT 

Seismic migration and inversion describe a class of 
closely related processes sharing common objectives 
and underlying physical principles. These processes 
range in complexity from the simple NMO-stack to the 
complex. iterative, multidimensional, prestack, nonlin- 
ear inversion used in the elastic seismic case. 

By making use of amplitudes versus offset, it is, in 
principle. possible to determine the three elastic param- 
eters from compressional data. NMO-stack can be 
modified to solve for these parameters, as can prestack 
migration. 

Linearized, wave-equation inversion does not inordi- 
nately increase the complexity of data processing. The 
principal part of a migration-inversion algorithm is the 
migration. 

Practical difficulties are considerable, including both 
correctable and intrinsic limitations in data quality, 
limitations in current algorithms (which we hope are 
correctable), and correctable (or perhaps intrinsic) limi- 
tations in computer power. 

1 

INTRODUCTION 

The words “migration” and “inversion” are, in fact, used to 
describe a number of related processes. To some people, seis- 
mic migration is strictly an imaging process. To others, seismic 
data already form an image which needs only to be massaged, 
or ‘?migrated, ” into its proper location. To still others, migra- 
tion is an inversion process which derives two-dimensional (or 
three-dimensional) maps of local reflectivity from seismic data. 

The exact one-dimensional (1 -D) acoustic inverse problem 
for plane waves at normal incidence has been vigorously at- 
tacked, solving, at least on paper, for absolute values of acous- 
tic impedance (e.g., Goupillaud, 1961; Ware and Aki, 1969; 
Berryman and Greene, 1980; Howard, 1983). Plane waves at 
nonnormal incidence have also been addressed with individual 
solutions for velocity and density (e.g., Stolt and Jacobs, 1980; 
Coen. 1981 and 1982; Hooshyar and Razavy, 1983). The in- 
verse acoustic linearized problem has been solved for point 
sources and receivers (Raz, 1981a, b). The inverse problem for 
elastic waves has also been approached, both by linearized 
approximation (Clayton, 1981) and through iterative modeling 
(McAulay, 1985). Some of the point-source methods (e.g., 
McAulay. 1985) use traveltime as well as reflectivity infor- 
mation Others (e.g., Clayton, 1981) assume traveltimes are 
known a priori and analyze only reflectivity information. One- 
dimensional processing (based on the wave equation) of CMP 
gathers can, on the one hand, be viewed as a restriction of the 
general migration or inversion problem and, on the other 
hand. as an extension of conventional processing and single- 
trace inversion methods. The relevance of all these solutions 
to the real seismic problem has not always been clear. The real 
Earth is certainly not acoustic, nor exactly elastic, and it cer- 
tainly is not exactly one-dimensional. 

Notions of seismic inversion are even more diverse, mainly 
because several inverse problems (and several approaches to 
solve them) can be formulated for seismic data. Traveltime 
information can be inverted fc. seismic velocities using “veloc- 
ity analysis” or, for near-surface variations using “statics.” A 
single stacked common-midpoint (CMP) trace forms an esti- 
mate of local reflectivity which, when combined with low- 
frequency velocity information (from well logs or velocity 
analysis), can be time-integrated to form an impedance esti- 

Considerable research has been concentrated on multidi- 
mensional wave-equation inversion, beginning with Cohen 
and Bleistein (1977). Mostly, the treatment has been in the 
linear approximation, ignoring transmission losses and multi- 
ple reflections, though approaches to full iterative solutions 
have appeared in the literature (Tarantola, 1984). Approaches 
to both many-offset (Clayton and Stolt, 1981; Raz, 1981a, b) 
and zero-offset (Bleistein and Cohen, 1979 and 1982) data 
have been considered. 

Zero-offset inversion relates easily to poststack migration. 
Multidimensional migration and wave-equation inversion 
differ more in emphasis than in substance (migration is pre- 
occupied with propagation, inversion with reflection or scat- 
tering), and approach essentially the same problem from 
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mate. This process is sometimes referred to as inversion (Lind- 
seth, 1979). More rigorous (and we hope, more realistic inver- 
sion) methods based on wave-equation analysis can also ex- 
tract information from traveltimes and reflectivities. 
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slightly different points of view. Papers describing the wave- 
equation migration/wave-equation inversion relationship in- 
clude Phinney and Frazer (1978) Bleistein and Cohen (1982) 
Clayton and Stolt (1981), Weglein (1982a, b), Berkhout (1984) 
and Cheng and Coen (1984). 

Many-offset inversion relates to prestack migration and 
combines elements of 1-D prestack inversion and poststack 
migration or inversion (Weglein and Wolf, 1985; Stolt and 
Benson, 1985). Indeed, wave-equation prestack migration can 
be considered a form of prestack inversion which solves for 
only one of the three elastic parameters. 

A comprehensive treatment of the many forms of migration 
and inversion is far beyond the scope of this paper. We only 
suggest that wave-equation inversion provides a unifying con- 
ceptual framework in which other approaches may be under- 
stood and also provides the potential of moving substantially 
beyond present-day capabilities of seismic processing and 
analysis. Table 1 lists methods of seismic processing and 
analysis and the wave-equation inversion procedure to which 
each corresponds or from which it can be derived. 

Here we first describe a wave-equation linearized inverse for 
the three elastic parameters in a vertically changing earth. We 
then discuss realistic objectives for the inversion process, 
address migration and multidimensional linearized inversion, 
and briefly discuss nonlinear methods. 

THE ONE-DIMENSIONAL INVERSE PROBLEM 

There is a close relationship between CMP NMO-stack 
processing and 1-D migration and inversion. CMP acquisition 
and processing rely on a ray-theoretical model, whereas mi- 
gration and inversion tend to appeal directly to the wave 
equation. However, for frequencies and distances germane to 
seismic wave propagation, the geometrical (ray-theoretical) 
limit normally applies. This ensures at least a broad consist- 
ency between NMO-stack and conceptually deeper wave- 
equation inversion processes. 

We can easily note the essential similarity between NMO- 
stack and a prestack Kirchhoff migration for a horizontally 
layered earth. It is also well-known that NMO-stack can be 
duplicated by an f-k dipless prestack migration (which is just 
NMO-stack inf-k space). Thus NMO-stack is, in its sphere, a 
legitimate process and is remarkably robust. In dealing with 
stacked data, even gross oversimplification often leads to 
useful results. For some applications, we can treat a stacked 
seismic trace as the result of a plane-wave experiment. This 
use (or abuse) of an obviously incorrect physical model is 
closely related to use of migration’s exploding reflector model. 
It works well for primary reflections, provided locations are of 
more interest than amplitudes. Even amplitude problems can, 
to some extent, be patched up through minor modifications to 
the data. The final breakdown of the plane-wave model occurs 
when we try to incorporate multiple reflections. For that, the 
stacked seismic trace simply cannot be considered a plane 
wave. 

Here, we lay out a simple physical model for primary reflec- 
tions of compressional waves in an elastic, layered earth. We 
begin with the wave-theoretical model of seismic inversion 
and relate it to the conventional ray-theoretical model. The 
result is an inversion algorithm which amounts to a moveout 
correction and a weighted CMP stack. In principle, we can 
solve for each of the three elastic parameters (density, P veloc- 
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ity, and S velocity) by varying the weighting coefficients in the 
stack. Since this model ignores such niceties as multiple reflec- 
tions and converted waves, it can only be viewed as incom- 
plete. The relevance to exploration geophysics of an inverse to 
the 1-D elastic problem may be debatable, but it is not likely 
that the real Earth problem will be solved before this one. 

The plane-wave reflection response 

We begin with a simple stratified earth model characterized 
by the three elastic parameters: 

u = compressional velocity. 

!3 = shear velocity, and 

p = density. 

We pass a plane compressional wave down through this 
model earth (assuming perfect transmission), collect the total 
upgoing compressional primary reflection response, and 
return it to the surface. Although our ultimate interest is in 
localized sources and receivers, we begin with plane waves, 
confident (e.g., Treitel et al., 1982) that once we have one 
solution, we can find the other. It may seem a little odd (not to 
mention unnecessary) to include shear velocity in this model 
when our stated interest is in the compressional waves. In fact, 
the three elastic parameters constitute the minimum amount 
of realism necessary to describe the angular dependence of the 
reflection coefficients The shear velocity is unnecessary to de- 
scribe the transmission process, because we neglect 
compressional-to-shear conversion in the transmitted wave. 

The appropriate downgoing wave is described by the 
WKBJ approximation (Morse and Feshbach, 1953). Consider 
a plane wave P of frequency o and ray parameter 

p = sin 8( _-)/U(Z), (1) 

where O(Z) is the angle the wave makes with the vertical at 
depth 2. In the WKBJ approximation, this wave has the form 

P(P> 2. Co) = P(p, 0, (0) d p(z)u(z) cos O(0) 
~~ 
p(O)u(O) cos 0(z) 

[ s ; dz’ 
x exp iw ~ cos O(z’) 1 o a(--‘) (2) 

The WKBJ approximation is the solution to the acoustic wave 
equation 

in the limit of high frequencies. At lower frequencies, it ne- 
glects reflected energy, converted energy, and transmission 
losses. The z dependence of P is contained in both the rapidly 
varying phase term and the relatively slowly varying ampli- 
tude term. The more important phase term depends upon 
velocity a, but not density p. The amplitude term depends 
upon both. It does not compensate for transmission losses but, 
rather, conserves energy as acoustic properties change. 

If we were to change variables from depth to traveltime via 

s L dz’ 
T= - cos 0(f), 

o a(f) 

and from P to 4, where 
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with 

4 = v, 

Stolt and Weglein 

(4) 
- 22 

2 + 0’ - V(T) 1 +(P, T, 0) = 0, (7) 

cos 8 F n= 
pa ' 

(5) 

then in the new coordinate system the WKBJ approximation 
would become the simple plane wave 

d’(P> 7, W) = d’(P, 0, akim’. (6) 

where 

V(T)= ~-'~21j/~T2. (8) 

In this coordinate system the WKBJ approximation amounts 
to neglect of the potential term V(T). It is thus a first approxi- 
mation in a Born-series expansion of the exact solution to the 
1-D problem. 

The wave equation in this coordinate system is (Jacobs and Having accepted the WKBJ approximation as an adequate 
Stolt, 1980; Coen, 1981) description of transmission, we now need a reflection model. 

‘Ihble 1. Aspects of the inverse seismic problem. 

Seismic processing Wave equation 
and analysis methods inversion 

One-dimensional Traveltime velocity One-dimensional 
analysis inversion with offset 

in the geometric 
acoustics limit 
(WKBJ) 

CMP stacked trace Plane-wave, normal- 
+ Trace integration incident, single- 

parameter linearized 
inversion 

Goupillaud equal Plane-wave, normal- 
traveltime inversion incident, single- 

parameter exact 
inversion 

Picking One-dimensional multi- 
+ Reflectivity estimates parameter (acoustic 
+ Amplitude/offset or elastic) linearized 

inversion with offset 
data) 

Picking Exact one-dimensional 
+ Reflectivity estimates multiparameter 
+ Amplitude/offset inversion with offset 

data 
Two- and three- Post- and prestack Post- and prestack linear 

dimensional migration single-parameter 
inversion 

Depth migration Variable-background 
linearized inversion 

Elastic migration Elastic linear inversion 
Three-component to find reflectivity 

migration 
Depth migration with Nonlinear (exact) 

in-built velocity constant-density 
analysis and multiple acoustic inversion 
removal 

Iterative, nonlinear, 
variable-density 
acoustic and elastic 
inversion 
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We divide the model earth into a large number of layers, each 
thin enough that the elastic parameters can be considered 
constant within each layer and that they will exhibit only 
small changes from one layer to the next. (This may require a 
much finer discretization than the data we eventually want to 
describe. The layers are not meant to be thought of as a 
discretization interval for processing, but as a conceptual 
tool.) 

Depth to the bottom of the 8th layer is zc, and thickness of 
the layer will be AZ, = zL - zI_ 1. Elastic properties in this 
layer are a,, (jlr and pr. At the bottom of the dth layer, the 
incident wave is 

x exp [io c AZ,. cos 0,./a,.]. 
(‘$1 

(9) 

The compressional wave reflected from the layer bottom is, at 
zd, just the incident wave in equation (9) multiplied by a re- 
flection coefficient: 

pr, (Pa Zb > 0) = Pi (~3 zf 3 a)Rt (8tY2,. (10) 

The reflection coefficient per layer R, depends upon the angle 
of incidence 0, of the plane wave in the Cth layer. This angle 
obeys 

sin 8, = pa,. (11) 

For the reflection coefficient R,, we invoke Chapter 5 of Aki 
and Richards (1979). The exact Zoeppritz reflection coefficient 
is rather involved and unnecessarily complicated for small 
changes between adjacent layers. Consequently, we borrow an 
approximate expression [Aki and Richards, equation (5.44)] 

_ 4 pt sin2 0 LI!L 
2 

at ' PcAzt 

The main benefit of choosing the expression (12) over an exact 
reflection coefficient is that expression (12) is linear in frac- 
tional changes of the elastic parameters. This simplifies the 
expression not only conceptually Cjust looking at expression 
(12), we easily see the effect of individual parameter changes], 
but computationally (the result is not sensitive to errors in 
absolute amplitude). Validity of expression (12) requires not 
only that changes at the layer boundary be small, but also 
that 0, not approach critical angle. 

Given an expression for R,, it remains to sum contributions 
from all layers and propagate them to the surface. The result 
is 

P, (~7 0, 0) = Pi (P, 0, 0) 1 AZ, R, (0,) 
G 

x exp [2io C AZ,, cos &/a,.]. (13) 
L’<e 

When the largest layer thickness AZ, is forced to zero, equa- 
tion (13) becomes an integral 

‘r(P3 OY w) = pi(P> O, a) =dz R(z, 0) 

1 (14) 

In equation (14), 0, z, and p obey the relation sin 8 = pa(z), 
and 

1 dlnp 
R(z, 0) = 2 

[ 

d In a 
dz + sec2 0 d 

‘7 

_ 4 E sin2 e d In (PP’) 
a2 dz 1 (15) 

is the reflection coefficient per unit depth. 
Note that the linearized reflection coefficient in this ex- 

pression has become, in a sense, “exact.” That is, for a con- 
tinuously varying elastic earth, equation (15) is as close to 
correct as any expression which neglects transmission losses, 
conversions, multiple reflections, and so on. Though “exact,” 
equation (15) is not unique. In an inhomogeneous earth, the 
notion of a primary reflection gets a little fuzzy, and so does 
equation (15). 

Equation (14) models the primary reflection response to an 
incoming plane wave of frequency w and direction 0 = sin- 1 
[pa(z)]. The response is a sum over depth of phase-shifted, 
angle-dependent reflection coefficients. The basic form should 
neither surprise nor dissatisfy. Indeed, if we look at the special 
case of normal incidence (p = 0 = 0), then equation (14) re- 
duces to 

P, (0, 0, w) = Pi (0, 0, w) 
s 

xdz d In (pa) 
____ 

0 2 dz 

x exp [2iw ldz’/a(z’)]. (16) 

That is, the reflected wave is a sum over all depths of the 
logarithmic derivative of the acoustic impedance, retarded by 
two-way traveltimes. Equation (14) and its restriction equation 
(16) to normal incidence are reasonable forms for describing 
primary reflections, and especially the inverse problem. Al- 
though the dc values of the elastic parameters are filtered out 
by the z-derivative, the band-limited far-field nature of seismic 
data prevents their direct recovery from reflectivity infor- 
mation anyway. The low-frequency information regarding 
trends requires data from sources other than reflectivity. The 
forms of equations (14) and (16) are naturally suited for recov- 
ery of the high-frequency information carried by the data. 

Relating plane waves to a point source 

An impulsive point source generates a waveform which is 
expressed as a superposition of plane waves. The exact form 
depends on many experimental parameters and surface 
boundary conditions. For illustration, we stick with the sim- 
plest possible case. Instead of a reflecting surface at z = 0, we 
extend near-surface earth properties to infinite height. For an 
impulsive point source of stength A located at z = 0, the com- 
ponent of the ensuing waveform with frequency cc) and ray 
parameter p will then be 

iAa, 
pi(P~“~0)=2~cose 1 

0 
(17) 
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where 0, is 8 at z = 0. Thus the reflected wave at z = 0 will be 
[combining equation (17) with equation (14)] 

s mdz R(z, 0) 
0 0 

dz’ cos B(z’)/a(z’) 1 (18) 
The reflected impulse response in p-r coordinates 

Evaluation of integral equation (18) would be slow (an N2 
operation) and inversion for R in terms of P very time- 
consuming. The simple solution is a change of variables from z 
to traveltime T, With r as defined in equation (3) (dT = dz cos 
B/a). equation (I 8) becomes 

P,(P, 0, 0) = 
iAa, 

s 

J 

2wjl - p2ai o 
dr R(r, p)eZLmT, (19) 

where R, expressed as a function of T and p, is 

1 d In a _++_ 
1 - p2a2 d7 

_ 4 !$ p2a2 d In pp’ ~ 
I ds 

R(T. p) (reflection coefficient per unit time) is actually R(z, 0) 
times dz/dr. Because no reflections occur when T < 0, the inte- 
gral in equation (19) is extended to -co. It is then recog- 
nizable as a Fourier transform from r to o of R(T, p): 

P,(P> 0, 0) = 
iAa, 

20Jqq 
R(w P). (21) 

Equation (21) is the second term (the incident wave Pi being 
the first) in an expansion of the exact solution to the point- 
source reflection problem. For our purposes we use equation 

(21). 
To solve equation (21) for R(T, p) we only have to take the 

inverse Fourier transform. Then 

2 cos 8” i- 
R(r> P) = a~ G P,(p> 0, T). 

0 
(22) 

The relationship 

T(Z) = 
s 

‘dz’[ 1 - p2a2(z’)]‘/2/a(z’) (23) 
0 

between T and z is different for each p. Consequently, an ex- 
pression for R(z, 0) would be more useful than equation (22). 
We write 

R(z, 0) = 
2 cos e(z) cos O(O) (? 

a(z)a(O)A ;ir P,(P> 0, T). (24) 

Equation (24) is a simple relation between the angularly de- 
pendent reflection coefficient R(z, 0) and the reflection re- 
sponse to a point source in the P-T domain. This relation can 
be used to work the forward problem (given R, calculate the 
data) or the inverse problem (given the data, calculate R). 

To work the inverse problem requires three steps. 

I. Put the data in the p-r domain and differentiate 

Data collection in two dimensions 

with respect to r. For a full 3-D surface experiment, we 
could use the 3-D Fourier transform (x, y, t)+ (k,, k,, 
0). For a 1-D earth, the lateral spatial frequency depen- 
dence must be only on k = Jk,’ + ki. Changing vari- 
ables from k to p = k/co, we multiply by -iw and in- 
verse Fourier transform from o to T. Alternatively, a 
2-D slant stack puts the data directly in the p-r domain. 

2. Use equation (3) or (23) to change variables from T 

to z and multiply by 2 cos 6(z) cos O(0) to form R(z, 0). 
The variable change is a form of moveout correction for 
each constant-p trace. 

3. Fit R(z, 0) to equation (15) and determine the elas- 
tic parameters d In pjdz, d In a/dz, and d In (pp2)/dz. 
This step is easy to set up, but difficult to accomplish, as 
we discuss shortly. 

The plane-wave reflection problem from which the p-o and 
p-r results [equations (18) and (24)] were derived assumed a 
3-D, (x, y, t), surface reflection experiment. For a 1-D earth, 
this is not required and leads to unnecessary complications. 
We replace equations (18) and (24) with equivalent 2-D ex- 
pressions appropriate for point sources and receivers. The new 
expressions are called 23-D expressions to distinguish from a 
pure 2-D result which pertains to line sources and receivers. 
The way to accomplish this is to inverse-transform equation 
(18) back to the y domain and set y = 0. Data used are 

(25) 

We inverse Fourier transform over k, and set y = 0: 

D(k,,O,o)=2 dk, 
s s 

dz e2iwTR(z, I3) set 8,. (26) 

The k, integral can be performed by the method of stationary 
phase (Bleistein and Handelsman, 1975). The major contri- 
bution to this integral comes near the vicinity of the stationary 
point (k, = 0) of the phase term exp (2ic.1~). The stationary 
phase approximation 

simplifies equation (26) to 

D&x, O>N = &I,, e. j dz ,,f;;ae;I:‘;l 1,2 > (28) 

where all functions of 8 are understood to be evaluated at the 
point k, = 0, i.e., at 

sin 8 k 
P= -=x 

a w’ 
(29) 

Note that the stationary phase approximation relates the spa- 
tial point y = 0 to a wavenumber point k, = 0, in apparent 
defiance of the uncertainty principle. In general, the stationary 
phase approximation replaces a wave-theoretic expression 
with its ray-theoretic counterpart. 

The difference between equation (18) and equation (28), 
other than the restriction k, = 0, is a 45 degree phase factor 

J- 10 and a divergence-correcting amplitude factor 
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[Sz 1 
l/Z 

dz’ a(Y) set 0(L) 
0 

The combination of these two terms effectively converts a 2-D 
line source into a 3-D point source. The benefit of the 2+-D 
expression is that only data at y = 0, need be collected, and 
only a i-D Fourier transform (or a 1-D slant stack) is neces- 
sary to put the data in the form of equation (28). 

A 2&D P-T expression analogous to equation (24) is also 
possible. pfine a filtered data set 

Q(P, 4 = J=D(k,, 0, ~1. (30) 

Then, instead of equation (24), the relation between reflectivity 
and data is 

0) 2 cos 0 cos 1 1:2 R(z, 0, = 
d-_’ a(Y) set Cl(f) 1 Q(P. 7). (31) 

u a0 

Computation of Q requires only a single (filtered) slant stack, 
after which calculation of the three elastic parameters pro- 
ceeds in a straightforward manner. 

Formulation in space-time 

Although the p-T expression (31) looks straightforward to 
evaluate, there is a catch: a slant stack of Fourier transform 
will accurately compute Q(p, 7) only if the data cover all 
source-receiver separations X. In practice, data must be col- 
lected over a finite number of offsets, and this limited aperture 
will, if ignored, distort Q. 

Instead of some iterative scheme to solve this problem, it is 
easiest to deal with the spatial sampling problem in real space. 
Moreover, returning to space-time produces a natural exten- 
sion of the concept of NMO-stack which accommodates a 
reflection coefficient with angular variation. 

Starting with equation (28), we transform from k, back to x, 
to make another stationary phase approximation: 

s d_ ei(2wr + k,x)R(Z, 0) 

cos cJo [j=dz, a(z,) set o(z,)]l’*’ (32) 
0 

Although not explicitly expressed, remember that T depends 
upon k, via its defining equation (23) and the relation (29). At 
the stationary point of the k, integral, p must be such that 

Y = 2 dz’ tan O(Y) = 2p 

The stationary phase approximation to equation (32) is 

D(x, 0, w) = & 
s 

R(z, 0) 
dz - 

0 h(z, 0) 

where 

x exp [2jw ldz’/(a cos Cl)], (34) 

h(z, 0) = ([dz’ a set H]“*(pz’ a sec3 0)“2. (35) 

The next step is to return D(.u, 0, w) to the time domain with 
an inverse Fourier transform. This collapses the --integral, 
leaving a simple relation between D and R, namely, 

D(u. 0. t) = 
Au, a R(z. 0) 

- R(-, 0), 
cos 0 cos ‘3, 4h(-_. 0) 

(36) 

subject to the constraint 

2 
s 

d:’ 

0 a(+/ 1 - p’s’(L)’ 
(37) 

Equation (37) and the stationary phase condition in equation 
(33) determine ,- and 0 (or p) as a function of .x and t. These 
relations are recognizable as the curved-ray moveout curves 
for a layered earth. When 0 is small, these relations can be 
replaced by simpler, straight-ray approximations. First define 

j 

z dl’ 
t,,=2 ) 

0 a(3) 

Then, expanding the square root in equation (33), obtain 

Y Z 2p 
SZ 

dz’ a(?) = pa;,, t, (38) 
0 

Similarly, expanding equation (37) and using equation (38) to 
replace p with X, 

t-2[$+p2~d’.a(:‘)=t,,+&. (39) 

Whether we use the curved-ray moveout equations or the 
rms approximations, equation (36) is a remarkably simple 
relation between the reflection coefficients R(z, 0) and 
moveout-corrected/divergence-corrected seismic data. The 
surprising thing is not that this simple relation exists (except 
for the divergence term, it is almost obvious), but rather that 
such a simple, satisfying formula should result from wavc- 
equation analysis. 

Equation (36) is a powerful, accurate formula for modeling 
or inversion of 1-D earth data, subject to the constraints on 
the plane-wave linearized formula (14) wherein we consider 
only primary compressional wave reflections, assume perfect 
transmission, stay clear of critical angle, and agree to dis- 
cretize finely enough that changes between adjacent intervals 
are small. Attenuation and anisotropy are likewise missing, 
and only the simplest of boundary conditions have been con- 
sidered. The stationary phase approximations should not 
cause undue concern; realistic seismic data are thoroughly 
far-field, and the stationary phase approximation is a very 
good one (Bleistem and Cohen, 1982). 

Recovery of elastic parameter changes from equation (36) 
follows a predictable course. First correct the data for move- 
out with a coordinate change t--t ; (or. equivalently, t+ to). 
Then correct the amplitude in the data with the divergence 
factors in equation (36) to obtain an estimate of R(z, 0). Final- 
ly, obtain a fit of equation (15) to R(z, 8) to obtain the individ- 
ual elastic parameters. Each of the three logarithmic deriva- 
tives ends up as a weighted sum over offset of the data correct- 
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ed for moveout. The weight factors, which are different for 
each parameter so as to satisfy equation (15), represent the 
only substantial change from conventional moveout correc- 
tion and stack. 

earized inversion formula always predicts changes in the other 
parameters also. These false predictions. or artifacts, also 
noted in Hanson (1984) can be significant. 

These artifacts can, to some extent. be dealt with at a cost of 
slightly greater algorithmic complexity. The confidence in an 
inversion can be improved by using angles only within the 
confidence interval of the data. For example, assume that sev- 
eral incidence angles need to be specified to invert for elastic 
properties. The range of reasonable angles should be chosen 
consistent with the minimum and maximum offset of the ex- 
periment and the depth of the particular reflector. Postcritical 
data must also be avoided. Additionally, Weglein et al. (1985) 
presented a method for distinguishing artifacts from true pa- 
rameter changes based on.f-k filtering. In space-time, the sim- 
plest measure is to confine attention to incidence angles of less 
than about 45 degrees (Hanson, 1984). If all else fails, we can 
try to invert the full Zoeppritz reflection coefficient; however, 
not just relative but absolute sizes of parameters then come 
into play. 

REALISTIC LINEAR IN\‘ERSION GOALS 

Because there normally are more than three offsets in the 
data. the relation in equation (15) provides more equations 
than unknowns. The inverse problem is therefore over- 
determined; nevertheless, a good estimate of all three parame- 
ters is very difficult to obtain. A large range of angles is neces- 
sary to distinguish between the three parameters. This need is 
made clear if we express equation (I 5) in powers of pa = sin 8: 

(40) 

At normal incidence. only the first term (acoustic impedance) 
contributes. At 30 degrees. the coefficient of the last term is 
only 8 percent of that of the first term. The last term does not 
become as large as the first term until 0 = 52 degrees. This 
angle is not often achieved at depths of exploration interest, 
even if we could retain confidence in the linearized form at 
that angle. 

The inverse to equation (40) will be, in most practical situ- 
ations. ill-conditioned. The ability to extract reliably all three 
parameters from contemporary seismic data is likely to be 
more the exception than the rule. Even before noting that 
several factors external to a reflector can alter amplitudes as 
sin’ 8. we realize we are in trouble. The three-parameter lin- 
earized inverse seems to be in a squeeze; to differentiate be- 
tween the parameters, a large range of offset angles is required. 
On the other hand, if we look at angles which are too large, 
the linearized model may break down. In a practical situation, 
it may be possible to separate the three parameters only at 
moderate depths where the angular aperture is large. 

A way to increase the reliability of an inverse to equation 
(40) is through use of a priori information to constrain the 
result. If we could reduce the effective number of parameters 
from three to two, WC would be much better off. There are 
many ways to accomplish this reduction (each involving the 
risk of imposing a solution which may not be true), but all are 
beyond the scope of this paper. We do point out that neglect- 
ing changes in shear modulus is not the answer. Note from 
equation (40) that shear modulus plays an important role in 
the angular dependence of the compressional reflection coef- 
ficient and, indeed, may often dominate it. Only when confin- 
ing attention to near-normal incidence can shear modulus be 
safely neglected. 

Another pitfall comes from the limitations of the linearized 
approximation. Although this approximation may be “exact” 
in a continuous, smoothly variable medium, changes which 
arc large over the sampling interval-and presumably rapid 
compared to the frequencies in the data violate the validity 
conditions, Validity conditions are essentially that the frac- 
tional change in each elastic property must remain small even 
when multiplied by tan 8. Weglein et al. (1985) pointed out 
that for a discrete change in one physical parameter, a lin- 

When talking of discretization problems, we acknowledge 
that not just the linearization approximation, but the whole 
physical model, can be placed in jeopardy. Changes which are 
too fast for the frequencies in the data to “see” directly can 
affect perceived physical properties in many ways, introducing 
time delays, attenuation, and anisotropy. In extreme cases, 
such effects can perturb or even invalidate inversion results. 

If data quality does not justify multiparameter inversion, it 
still may be possible to solve for a single parameter. By confin- 
ing attention to near-normal incidence, acoustic impedance 
becomes a legitimate target. Most useful would be the abso- 
lute value of this property, though that is an elusive target. 
Even with low-frequency information supplied (or inferred), 
integration of the logarithmic derivative is treacherous. Data 
noise and transmission effects accumulate and multiples in the 
data bias the result (a spurious spike in the reflectivity series, 
when integrated, alters the background level of the parame- 
ters). Data normalization remains a problem. We expect better 
results over short intervals. Under good conditions, it is possi- 
ble to map the relative sizes of impedance changes accurately. 
Even for poor data, we expect to document the existence and 
possibly the sign of an impedance change (Weglein and Gray, 
1983). 

To summarize, multiparameter inversion methods are used 
to determine the configuration of physical properties. Depend- 
ing upon the data, there are various levels at which data can 
be inverted. The first, least ambitious level is to determine, at a 
given subsurface location (in depth or time), whether some 
property (maybe acoustic impedance) has changed. At the next 
level, we also determine the sign or phase of this change. At a 
higher level, we acquire amplitude information. Slightly 
higher, we recognize the “signature” (e.g., an unmistakable 
increase in amplitude with offset, see Ostrander, 1984) of some 
target geologic entity. At a still higher level, we distinguish 
more than one physical property and determine the sign of 
each change. At the highest level, absolutely true values of all 
relevant physical properties are determined. Of course, the 
highest level is desired when we can get it. However, even if 
the highest level is unobtainable, useful information may still 
be available with the sign of a parameter change being easier 
to predict than its amplitude. 

In practice, the power to resolve individual parameters must 
diminish with depth. At deeper levels, raypaths approach 
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normal incidence, and only the ability to see acoustic im- 
pedance is left. 

THE MULTIDIMENSIONAL INVERSE PROBLEM 

The last decade has seen an explosion in migration and 
inversion technology. Since the early work of Claerbout dem- 
onstrated that wave-equation techniques were really appli- 
cable to seismic processing, a host of different processes have 
been presented. For a while, it seemed that competing technol- 
ogies were developing-differential versus integral versus 
transform methods, then time migration versus depth migra- 
tion versus reverse time migration, and finally, migration 
versus inversion. The contemporary view is that all these ap- 
proaches share a common theoretical base. The Earth being 
complex and variable. it is necessary and desirable to keep an 
arsenal of specialized tools which are similar, but each one is 
customized to a particular application. 

The major difference between single-parameter wave- 
equation inversion and wave-equation migration has turned 
out to be semantic: with its origins in scattering theory and 
applied mathematics, seismic inversion encourages a slightly 
different vocabulary than the more operationally based migra- 
tion. 

This is not to say that inversion concepts have not added to 
migration theory. Seismic inversion has provided a means to 
advance past recovery of reflectivity information to recovery 
of the physical changes which produce reflections. This, in 
turn, tied migration more firmly to 1-D data processing con- 
cepts from which the relationship between reflectivity and un- 
derlying physical changes has been better understood. Inver- 
sion concepts also have provided a framework for dealing 
with experimental limitations in real data sets. For example, 
migration usually deals with the problem of a source wavelet 
by ignoring it. Set up as an inverse scattering problem, the 
effect of the source wavelet can be incorporated, and the 
changes to the wavelet through the various processing steps 
can be observed and calculated. Likewise, effects of finite 
source-receiver aperture can be built into the problem. 

Evolution of migration and inversion 

Seismic migration has been around a long time Determinis- 
tic migration methods are probably as old as the earliest seis- 
mic data. The advent of digital computers encouraged the 
growth of statistical migration methods-in particular, the 
“arc .swinging” algorithms, whose modern counterpart is 
Kirchhoff migration. The Claerbout concept of a moving co- 
ordinate system reduced the cost and increased the fidelity of 
seismic migration to the point where it could be considered 
part of a standard processing sequence. Soon differential, inte- 
gral. and,f’k migration schemes abounded. 

Cohen and Bleistein (1977) formulated the inverse seismic 
problem in terms of perturbation theory, presenting an appar- 
ent alternative to seismic migration. In this method, deviations 
from background values are solved by linearizing the inverse 
problem. The linearized inverse method developed by Bleistein 
and Cohen has concentrated on inversion of zero-offset seis- 
mic data by means of the scalar wave equation. This one- 
parameter inversion is now known to be closely related to 
poststack migration, both in theory and in practice. A one- 
parameter inversion is exactly right for zero-offset data. For 

this case, there is enough information to recover only one 
earth parameter. [Only one parameter contributes; equation 
(40) shows that only acoustic impedance contributes to 
normal incidence seismic data.] 

For prestack inversion. the scalar wave equation does not 
suffice. Though the original work of Cohen and Bleistein dis- 
cussed both scalar and elastic fields, seismic inversion methods 
were essentially scalar until Raz (1981a. b) introduced an in- 
version scheme for acoustic (variable velocity and density) 
data. A nice feature of Raz’s 1-D result (Raz, 1981a) was a 
space-time formula used to solve for density and velocity 
given data at two offsets. A second Raz result (Raz, 1981b) 
was a multidimensional linear solution for density and veloci- 
ty perturbations. Clayton and Stolt (1981) also worked with 
the acoustic model, producing an ,/-li space result valid for 
variable background velocity and density. Raz (1982) pub- 
lished variable-velocity acoustic formulas which. with some 
restrictions, solve for absolute values of earth parameters. The 
importance of work with the acoustic wave equation should 
not be understated, particularly regarding advances in under- 
standing of the multiparameter inverse problem. However, the 
acoustic wave equation does not quantitatively model reflec- 
tions of compressional waves in the real Earth. As seen in 
equation (40), shear modulus changes make a major, perhaps 
dominant, contribution to the reflectivity away from normal 
incidence. 

The elastic problem is more difficult to work with than the 
acoustic problem, mainly because it tends to lead toward 
lengthy equations. However, several researchers have de- 
scribed procedures, including Marfurt (1978) Clayton (1981) 
and recently Chen and Xie (1985) and Tarantola (1984). 

The linear perturbation model 

The first step in wrestling with the inverse seismic problem 
is to develop an adquate model of the reflection experiment 
and the reflection process. For a 1-D earth, this is made sim- 
pler by a change of coordinates from depth to traveltime 
[equation (3)]. This change may not be possible or helpful 
when velocities vary laterally (Hagin and Gray, 1984). This 
does not mean that the multidimensional problem is intract- 
able. A great many tools are still available. The linearized 
perturbation method is a simple, effective approach to the 
multidimensional problem. In this method, we begin with a 
known or predetermined background model, close enough to 
true Earth properties that we can consider them to be small 
deviations or perturbations of the model. Typically, the back- 
ground model is expected to describe wave propagation in the 
earth with reasonable accuracy, neglecting the generation of 
reflected waves. The perturbations from the model then gener- 
ate the reflection data. 

To illustrate the concepts, we use the acoustic wave equa- 
tion. Although admittedly inadequate. the acoustic wave equa- 
tion leads to results which are simple to describe and, better 
yet, simple to generalize. For a point source at x,, the total 
response P at x, including reflections, obeys the acoustic wave 
equation 

L 
3 

V.&V+& 
p(x)u (x) 1 

P(x Ix,: 0) = -S(o)ci(x - x,). (41) 
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The source term S(o) represents the Fourier transform of a and the modeled data should approximately obey the lin- 
source wavelet. earized integral equation (45). 

The approximate (unperturbed) background wave field G,, 
due to an impulsive point source satisfies 

The form of equation (45) is reminiscent of the 1-D equation 
(14). However, there are two differences. The first is that the 
transmission term in equation (14) incorporates the correct 
velocity, whereas Go is guided by an approximation a,. The 
second is that V(x, o), though clearly related to reflectivity, is 
not exactly a reflection coefficient. The first difference is both 
good and bad. The good part is that it allows Go to be con- 
structed without an exact knowledge of density and velocity. 
(If we had that knowledge, the inverse problem would be 
solved already.) The bad part is that, to the extent that a0 

differs from a, reflection points will be mislocated upon inver- 
sion. [This is also true for the 1-D case. The reflection coef- 
ficient R(r, p) can be solved using equation (22) from the re- 
flection data, even if velocity as a function of depth is un- 
known Conversion from traveltime to correct depth, however, 
is possible only with the correct velocity.] A discussion of the 
second difference, the relation between V and R, follows. 

v.‘v+ 632 
- 

PO PO4 > 
Go(xlxs; o) = -6(x - xs). (42) 

If G, is to track the propagation of a wave accurately, a, 

should be close to the true velocity a. On the other hand, if p0 
and a, vary too rapidly, Go will contain reflection energy. This 
may be all right, especially if we are using a successive ap- 
proximation scheme. Ordinarily, it is desirable for Go to be 
reflection-free, if for no other reason than we are unlikely to 
know a and p sufficiently well a priori to reproduce accurately 
the reflections. The ideal choice for a0 and p,, would be local 
averages of the true values, too slowly varying to produce 
significant reflection energy for frequencies where S(w) is non- 
zero. Although we may fall short of this ideal in practice, we 
proceed on the assumption that a0 and p0 are indeed local 
averages close to the true Earth parameters. 

We designate the difference between the two wave operators 
in equations (41) and (42) as a potential I/: 

=v._+02 2L (12 v 
P i > Pod; ’ 

where 

and 
2 

PO a0 
u,(x) = ~ - 

Pa2 
1. 

This potential then contains the unknowns for which we 
would like to solve. 

The difference D between the exact and modeled response 
obeys a simple identity 

D(x, I x,; 01 = Ox, I x,; 01 ~ SWGo(x, I x,; w) 

= dx G,(x,lx: w)t’(x, w)P(xlx,; w), (44) 
s 

which can be verified by applying the unperturbed wave oper- 
ator to both sides of the equation. Equation (44) is nonlinear 
in the potential because P (which depends upon the potential) 
appears inside the integral along with the potential. We lin- 
earize it simply by approximating P by SG, in the right-hand 
side of equation (44): 

D(x, I x,: (0) 2 S(co) 
s 

dx G, (xy I x; w)V(x, w)G, (x I x,; w). (45) 

If Go is a good model of the transmitted wave minus reflec- 
tions. then the interpretation of equation (45) is clear: The 
response P at xy due to a source at x, is the sum of a direct 
arrival SG, and an integral over all possible reflection points. 
The intcgrand is the product of a transmitted wave from x, to 
the re!Iection point x, times a reflection term V(x, o), times a 
transmitted wave from x to xq, Should Go include reflection 
energy, then the equation still holds, but the interpretation 
does not. We state that the difference between the actual data 

WKBJ approximation in three dimensions 

Some of the complexity of equation (45) can be removed by 
invoking the WKBJ approximation. Suppose that Go closely 
approximates a delta function wavefront so that in the fre- 
quency domain, 

G, (xy I x, : 0) 1 cl0 (x, I x,) exp LiWx, I x,)1. (46) 

Here, go is the amplitude of the wavefront, which is assumed 
to be slowly varying and T is the traveltime from source to 
receiver. which varies rapidly. Indeed, 

IvTl= l;a,, (47) 

while the direction of VT defines the local direction of the 
raypath from source to receiver. The amplitude go is determin- 
able from the first transport equation (Morse and Feshbach, 
1953) for the WKBJ expansion. 

Using the WKBJ approximation for Go, equation (45) re- 
duces to 

D(x, I x, ; 0) = 02S(o) I dx go cxy p$” 1%) c(x, 0) 

0 

x exp [iW[T(X, I x) + T(X I x,)1), (48) 

where c(x, 6) is a simplified potential function denuded of 
frequency and differential operator dependence: 

‘$x:oL=($- I~+cos(2fJ)(;-l). (49) 

The angle 20 is the angle between incident and reflected rays 
at the reflection point x. Although not explicit in this formula, 
c depends upon source and receiver coordinates x, and .xg 
through the angle of incidence 0. The simplification in equa- 
tion (49) of the potential function is made possible by the 
WKBJ approximation, which is essentially the geometrical 
acoustics approximation. The impulse response Go has a well- 
defined direction at every point, so the derivatives contained 
in F’ are easily evaluated. The potential u(x, 8) is seen to be the 
sum of two terms, one involving density Ap/p and the other 
bulk modulus A(pa2)/pa2. As such, it is hardly identical to the 
1-D reflection coefficient equation (15). However, if p0 2 p 
and a, = a, then 
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2$x, 0) in In 2 + cos (28) In :, 

and better yet,’ 

(50) x go (.ys I x3 4go (-7 2 I x,) 
_ - u(x, z, O)eioro. 

1 dlnp 
- $ set’ 8 i U(X) z 2 

[ 

S In a 
- 

aZ 
+ set’ 8 - 

a2 I 
3 R(x, e). (51) 

The right-hand side of equation (51) is recognizable as the first 
two terms of the reflection coefficient equation (15). We there- 
fore identify R(x, 0) as a reflection coefficient* and V(X, 0) as an 
integrated angle-filtered reflection coefficient. The last term in 
(15) does not appear in (51) because shear modulus changes 
are invisible to the acoustic wave equation. A way to view the 
shear modulus term is as a mysterious leakage of energy to 
and from an unseen other mode of propagation. As such, we 
are free to add it to equation (51). This step can be justified by 
recourse to the elastic wave equation (Clayton, 1981). 

2&D formulation 

If u(x, 0) does not change significantly in the y direction, 
equation (48) for D can be further simplified. We confine data 
values to y4 = y, = 0. 

The only significant y dependence in the right-hand side of 
equation (48) is in the traveltimes $x,1x) and r(xIx,). These 
are clearly minimized at y = 0. The go terms can be replaced 

by their values at y = 0, leaving 

D(x, 1 x,; co) = O’S(W) J dx 

4-T z, 0) 
x 

J 
dz go(.xglx> 4gok zlx,)----- 

p. 4 

x J dy exp [iw(r(x, I x) + x(x 1 x,)]. (52) 

Writing traveltime in the vicinity of y = 0 as 

T.(Xg I x) + 56 I XJ = 50 + Tyy y2/2, (53) 

the y integral in equation (52) can be evaluated by stationary 
phase, leaving 

w2S(o) 
D(x,lx,; co) = - 

Jio J J dx dz 

‘To proceed to equation (51) from equation (50), we assumed that a, 
and p0 are slowly varying, i.e., have negligible derivatives and do not 
produce noticeable reflections. The term cos (28) which depends on 
the background velocity is likewise assumed to have negligible Z- 
derivative. For background velocities which do produce reflections, 
equation (51) becomes the difference between modeled and actual 
reflection coefficients For a slowly varying background, we empha- 
size what may be obvious: Although the potential technically depends 
on the choice of background parameters, it is actually, extremely 
insensitive to them. The logarithmic approximation in equation (51) is 
really an improvement to the form of equation (49), as noted in the 
section on 1-D. 
‘Strictly, the quantity R defined in equation (51) is a true reflection 
coefficient only when local velocity structure a, does not vary lat- 
erally. In general, the true reflection coefficient would be a derivative 
taken normal to local structure. Here we chose, somewhat arbitrarily, 
to work with the quantity R as defined in equation (51) and to call R, 
somewhat disingenuously, a reflection coefficient. 

PO 4 VTrr 

(54) 

Equation (54) differs little from a$ue 2-D formula. We ob- 
serve the 45 de ree phase term die and a divergence correc- 
tion term Y syy, which together convert a 3-D experiment 
along the line y = 0 into an equivalent 2-D form. Provided ryy 
can be estimated (which. in the worst case, can be accom- 
plished by ray shooting), the 24-D form presents little ad- 
ditional complication. Bleistein (1985) presented a formula for 
calculating rpF from in-plane raypath information. The result 
is r,, = 2/o, where o is a ray parameter related to arc length s 
on the ray by do/ds = a(-, z). 

Multidimensional linearized inversion 

A prescription for inversion of the multidimensional formu- 
la in equation (48) or (54) is given in Clayton and Stolt (1981). 
The prescription involves a form of migration. We first 
downward-continue to depth z the reflection data D, both 
source and receiver coordinates. This, in principle, is done by 
application of the divergence theorem to both source and 
receiver coordinates along the surface I’ = 0. The amplitude of 
the downward continuation must be carefully computed and 
adjusted for divergence effects. The zero-time component of 
the downward-continued data is extracted by summing over 
frequencies, effecting a migration of the data. By retaining 
migrated data for .xq # x,, information regarding angles of 
incidence is also retained.3 To decode the angle of incidence 
information. we Fourier-transform the migrated data over all 
spatial coordinates. The result is proportional to the Fourier 
transform of the reflection coefficient in equation (51). 

For the special case of a depth-dependent background ve- 
locity, we write an explicit _ z “-D formula (see the Appendix) 

R(k, - k,, k;, 0) 

k =.A 
4i 

set’ 0 d-_ elk=< J 

x [=I”’ exp [-ico ldz’q/a]D(k,lk,: co). 

(55) 

In this expression, 

y,(z) = \/l - k~a&h’, (56) 

jFor data at yg # s, to be nonzero as t + 0 may appear to violate 
causality. In fact, it LS true that the data must go to zero (within the 
limits of source-receiver size and bandwidth) as yg moves away from 
Y,. There is still the question, however, of how the data approach 
zero, and it turns out (because of the angular dependence of reflec- 
tivity) the limit is sensitive to the direction of approach to a reflection 
point. The migrated data are not a simple delta function of .xg - x,, 
though they are sharply peaked. A Fourier transform over offset and 
depth reveals that the migrated data are not constant in offset wave- 
number (which would correspond to a delta function in offset) but, 
rather, they form a slowly varying function of offset wavenumber 
divided by depth wavenumber, [see equation (59)] i.e., a slowly vary- 
ing function of angle of incidence. 
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q,(z) = J_, (57) 

and 

q(z) = 49 (z) + q,(z). (58) 

R(k, , k,, 0) is the double Fourier transform of the reflection 
coefficient R(x, z, 0) at the angle of incidence 8. 0 is determined 
in this formula as the ratio of offset spatial frequency to depth 
spatial frequency: 

tan 8 = (kg + k,)/k, . (59) 

Equation (55) is an extension [provided we use equation (15) 
for R] of the 1-D inversion formulas developed in the previous 
section. The prescription is to (1) Fourier transform the data 
from xgr x,, and t to k,, k,, and w; (2) downward continue to 
depth z with a phase shift and the amplitude correction given 
inside the w integral of equation (55); (3) sum over w to effect a 
migration; (4) when the migration is complete for all z, Fou- 
rier transform from z to k, to obtain the perturbation; (5) 
multiply by k, set* 0/4i to convert the perturbation to a reflec- 
tion coefficient; and (6) inverse Fourier transform over k, = k, 
- k, and k, to yield a spatial map of the local reflectivity as a 

function of incidence angle. 
Although explicit, equation (55) does look unwieldy. Given 

some further approximations (e.g., straight raypaths), some of 
the complexity can be removed. For example, if background 
velocity is assumed constant, then both the o and z integrals 
are trivially evaluated, leaving 

I?(k,-k,,k;,R)=; 
J 

4ik,q,q,Cl + (k, + k,)*/kf 

1 + (k, - k,)*/k; 

D(k, I 4; 4, (60) 

where l? is a divergence-adjusted version of R : 

lqx, z, 0) = R(x, z, W&> (61) 

and o and k, are related as 

k,=,(,,,,,,=/>+J>. (62) 

We showed above that the extension of the NMO-stack 
concept to accommodate an angular dependent reflection co- 
efficient allowed the inversion for the three elastic parameters 
in a vertically varying medium. The elastic inversion then re- 
quires three different weighted sums over offset of moveout 
and divergence-corrected data. The analogous multidimen- 
sional situation results in different specific weighted averages 
of D(k,, k,, o) (or its downward continued generalization) 
providing either a migration or the acoustic or elastic compo- 
nents of reflectivity. If the background is constant (and we 
assume line sources) the elastic generalization of the Clayton 
and Stolt (1981) result leads to (see, e.g., Clayton, 1981) 

D(k,, k,, 0) = i Ai(k,, k,, w)ai(k, - k,, k,), (63) 
i=l 

where 

A,=-Po 
4% q, ’ 

A,= - fi (4, 4, - k, k,a%*), 
.s !I 

A, = - & (- $ Ck,qs + kq,l’), 
s 9 

and the ai are the Fourier transforms of 

p. ai a, =-- 1 
pa* ’ 

a2 =fJ- I, 
P 

a _po_l. 
3 - PO2 

The coefficients A, and A, are identical to those in Clayton 
and Stolt (1981). They appear slightly different because qg and 
q, are defined slightly differently there. The coefficient A,, 
describing leakage of compressional energy into a shear mode, 
does not appear in Clayton and Stolt. From equation (63) the 
ai are reconstructed [see e.g. Clayton and Stolt (1981)] as 
weighted averages of D(k,, k,, 0). Equation (63) can be rewrit- 
ten as 

D(k,, k,, o) = -&?- 
2!3; 

4qg 4, 
a, + cos 2Oa, - z sin* 20a, , 

a0 > 

where 8 is the half angle between the incident and reflected 
pressure wave 

0 = i[sin~’ (k,a,/o) + sin-” (k,a,/w)]. 

The elastic generalization of equation (49) is 

2 

0(x, 0) = a,(x) + cos 2Oa, (x) - 2po sin* 2Oa, (x), 
a; 

and using equation (15) the relationship between the elastic 
t’(x, 0) and R(x, 0) is also given by equation (51). Equation (63) 
is almost the same as equation (60). They differ because equa- 
tion (60) incorporates the 2$D correction [equation (A-9) of 
Clayton and Stolt (1981)]. 

For the more general case, Cohen and Hagin (1985) pro- 
mised to generalize the zero-offset, space-time inversion for- 
mula to prestack data. 

Whichever form we choose for a migration and inversion 
operator, a few conclusions can be made. 

1. Inverting for the elastic parameters does not great- 
ly complicate the migration process. We expect the ex- 
pense of a migration and inversion algorithm to be 
dominated by the migration process. 

2. The limitations in resolving all the elastic parame- 
ters noted for 1-D inversion still exist. Thef-k formulas 
in equations (55) and (60) obscure the effects of finite 
source-receiver aperture but do not eliminate them. In 
fact, the resolving power of migration and inversion 
must diminish with depth, leaving ultimately only mi- 
gration. 

NONLINEAR METHODS 

There are a small number of exact, nonlinear, multidimen- 
sional methods for solving acoustic and elastic inverse prob- 
lems. For excellent reviews of 1-D methods, see Newton (1966) 
or Burridge (1980). For the multidimensional problem, there 
are several approaches which have been taken. One is to 
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invert the Born series iteratively. This line of research was 
originated by Jost and Kohn (1951), Kay and Moses (1955), 
Prosser (1969), and Razavy (1975) and was introduced to geo- 
physics by Weglein et al. (1981) and Stolt and Jacobs (1980). 
The convergence properties of this series solution were studied 
by Prosser. Only “small” reflection data would allow the 
series to converge. Weglein (1982b) generalized some earlier 
Razavy (1975) work to invert a “distorted” Born series for an 
arbitrary background, thus allowing reflections and multiples 
in the background model. The goal was to allow accommoda- 
tion of “larger” reflection data. 

CONCLUSION 
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Another approach to solving the multidimensional inverse 
problem derives from the Gelfand-Levitan/Marchenko inte- 
gral equation methods originally designed for the Schriidinger 
equation (Agronovich and Marchenko, 1963; Faddeev, 1963). 
In one dimension, a Liouville transformation exists to map 
elastic and acoustic problems to a Schrodinger equation and 
hence allows the machinery designed for the latter to be used. 
An interesting paper by Berryman and Greene (1980) showed 
that a discretized form of these integral equation methods 
leads to the original Goupillaud (1961) equal-traveltime in- 
verse solution. However, even though multidimensional 
Schrodinger equations had been inverted (in theory) in two 
and three dimensions in Newton (1981) and Cheney (1984), no 
corresponding Liouville transformation was found to allow a 
multidimensional acoustic or elastic equation to be mapped 
into a multidimensional Schrodinger equation. Recently, Coen 
et al. (1984) presented a method for inverting a 2-D, variable- 
density acoustic equation by collecting point source data. 
Transforming the data over the dimension of which the 
medium is independent allows a 2-D Schrodinger equation to 
evolve. The Cheney 2-D Marchenko equation is used to solve 
the problem. Transmission as well as reflection data would be 
required. 

Several authors have recently approached the multidimen- 
sional linear and nonlinear inverse problem from the gener- 
alized linear inverse point of view. Among these are Chen and 
Xie (1985) Berkhout (1984), Keys and Weglein (1983), and 
Tarantola (1984). The method basically consists of approach- 
ing the Fredholm I integral equations, which result from the 
linear Lippmann-Schwinger equation, by a generalized linear 
inverse method. These methods impose the constraints to de- 
termine a model which (1) is close to the reference model and 
(2) has the predicted data residuals close to the actual re- 
siduals. The residuals are the difference between the data and 
the background model-generated data. This method deter- 
mines a “solution” whether or not the original integral equa- 
tion possessed a single solution, many solutions, or no solu- 
tions. Confidence in these methods was discussed by several 
authors--e.g., Treitel and Lines (1985). The question of the 
convergence of the iterative solution (and the convergence to 
the “answer”) of the generalized linear inverse approach to 
the nonlinear problem has yet to be addressed adequately. 

Common to all the nonlinear approaches is a demand for 
massive amounts of computer power. Given the size of the 
seismic problem (a good-size 3-D survey should be looking at 
lo* to lo9 subsurface points) and the fact that any nonlinear 
method must employ point-to-point correlations over sub- 
stantial distances (roughly squaring the size of the problem), 
we begin to realize that today’s “supercomputers” represent 
but a small step in the right direction toward the facilities 
necessary for a complete solution to the seismic problem. 

Seismic processing has made significant advances during the 
last decade. Imaging techniques have matured and merged 
with seismic inversion to form potentially powerful tools for 
unraveling geologic structure and lithology under ideal con- 
ditions. A general principle for inversion is that the more am- 
bitious the goal, the more hazardous and sensitive the pro- 
cedure. However, the potential exists for predicting the three 
elastic parameters from compressional data. Practical diflicul- 
ties are many. They include limitations in data quality (some 
removable with extra effort and some not) and in available 
computer resources. 
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APPENDIX 

DERIVATION OF THE INVERSE FORMULA FOR A STRATIFIED BACKGROUND 

There are a few steps between the general 2)-D modeling 
formula in equation (54) and the stratified inverse in equation 
(55). The first step is to write a formula for the stratified 2-D 
Green’s function G,. From Clayton and Stolt (1981) 

t(k, - k,, z, t)&(z) exp 

X [ r 
-iw dz’ q(z’)/a, (z’) 

0 1 
I.‘2 

Ye U.J)q, ((%I, (=)q, (z) i ‘d=’ a, (z’)&‘)/q, (z’k (z’) 
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1 

L JO 

1 
112 

In this expression, yy, q,, and q are as defined in 

(56), (57), and (58). The incidence angle U is given by 

(A-1) 
tan o = (k, + Uao(--) 

WY(--1 

(A-2) 
equations 

(A-3) 

with q, as defined in equation (56) of this paper. With this 

formula, the 2&D modeling equation (54) is expressed in k- 

space as 

D(k, I k,; w) 

/% 

4 
dz 

As such, it is an implicit function of k,, k,, z, and w. 
The integral in the denominator of equation (A-2) compen- 

sates for 2+-D divergence-Together with the phase term ,/‘& 
it comprises the term Vi~r,, in equation (64). 

The expression (A-2) is a forward modeling formula which 
translates the potential I‘ into observable data. To derive t’ 
from D, we must effect a true amplitude migration M of the 
data. Write M as an integral over frequency of downward- 
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continued, normalized data: 

M(k,lk,; -_J = jda exp [ie3 [“rir’ 4(z’)/u,(z’)] 

x E(k, > k, . zo , NW, I k,; 01 (A-4) 

where the multiplier F will be chosen to normalize the 2f-D 
migration properly. 

With expression (A-2) for D, equation (A-4) is expandable to 

Mk, I k,; 20) 

L s z 
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(A-5) 
For the o integral, the rapid w dependence is concentrated in 
the exponential term. Since this term oscillates rapidly unless 
z - 2” ) we conclude that the z integral contributes only for z 
near zO. In this neighborhood, we can treat the background 
velocity as locally constant. The exponential term reduces to 
exp [ - iw(-_ - zo)q(zo)ia, (zo)]. The angle of incidence can also 
be evaluated at zo, tan 8 = (k, + k,)a, (z,)/[oq(z,)], as can all 
the other z dependence within the z integral except for the 
possibly rapidly varying potential u(z). Thus 

M(k, I k; --,,I 

x 
pokoF(k,, k,, zo> 01 

s L”dz’ a, (z’)q(z’)/(q, (z’)q, (z’) 1 
112 
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0 
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Equation (A-6) can be further simplified by a change of vari- 
ables from o to kZ = oq(zo)/a(zo). This simplifies the ex- 
ponential and also removes the dependence of incidence angle 
0 on zo. Since 

we have 

dwidk, = a0 (zo)q, (zo)q, (zo)lq(zo), (A-7) 

M(k, 1 k,; zo) = 
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We now make F the reciprocal of all the unwanted terms in 
the k, integral. Define 

Ok,, k,, zo, w) = 4 &o) 
Jim PO kobo (4 

l/2 

X ‘“dz’ a, (z’)q(?)/[q, (z’)q, (z’)] 

(A-9) 

Then equation (A-8) reduces to 

M(k,lk,; zo) = jdk, eLkZ=o jdz e-‘k%(k, - k,, z, 0). (A-10) 

The z integral is just a Fourier transform of c from z-space 
to k,-space : 

Mk, I k,; zo) = dkz eik%(kg - k,, k,, 0). (A-l 1) 

If not for the k, dependence of 0 [in terms of k,, we have tan 
0 = (k, + k,)jkl], the kZ integral would be simply the inverse 
Fourier transform from kL back to zo, Even so, it is still true 
that the forward transform of M from z. to kZ equals t’: 

I dz, M(k,, k,; ~,)e-‘~=‘~ = L.(kB - k,, k,, 0). (A-12) 

We note that by varying k, + k,, all values of 8 can be com- 
puted for a fixed k, - k, and k,. Consequently, 8 can be con- 
sidered an independent parameter in equation (A-12). 

By combining equations (A-4), (A-9), and (A-12) we almost 
have equation (55). The missing ingredient is equation (51) 
which relates the potential o to a reflection coefficient R. Using 
the relation 

R(k,.k2,0)=+ sec2 Ov(k,, kZ, O), (A-13) 

equation (55) follows. 


